(ghh.*)
Một số nguyên dương \(X\) được gọi là số "gần hoàn hảo" nếu thỏa mãn điều kiện: \(2 \times X\ \leq \ T\), với \(T\) là tổng các ước số dương của \(X\).
Ví dụ số 12 là một số "gần hoàn hảo" vì điều kiện \(2 \times 12\ \leq \ 1 + 2 + 3 + 4 + 6 + 12\) đúng.
Yêu cầu: Cho dãy số \(A\) có \(n\) phần tử nguyên dương \(a_{1},a_{2},\ldots,a_{n}\), hãy kiểm tra xem các phần tử của dãy số \(A\) có phải là các số "gần hoàn hảo" hay không?
Dữ liệu vào:
- Dòng 1: Ghi số nguyên dương \(n\) \((n\ \leq \ 10^{6})\);
- Dòng 2: Ghi \(n\) số nguyên dương \(a_{1},a_{2},\ldots,a_{n}\) \((a_{i}\ \leq \ 10^{6}\) với \(1 \leq \ i\ \leq \ n\)). Các số trên cùng một dòng cách nhau bởi dấu cách.
Kết quả: Gồm \(n\) dòng, dòng thứ \(i\) ghi số 1 nếu \(a_{i}\) là số "gần hoàn hảo", ngược lại ghi số 0, với \(i = 1,\ 2,\ \ldots,\ n\).
Ví dụ:
Input | Output |
---|---|
3 6 16 12 | 1 0 1 |
Ràng buộc:
- Có 15/25 test, tương ứng 3 điểm với \(n\ \leq \ 10^{3}\);
- Có 10/25 test, tương ứng 2 điểm với \(10^{3} < n \leq \ 10^{6}\).
Code tích cực |
---|
Trong 24h |
|
Trong 7 ngày |
|
Trong 30 ngày |
|
Thống kê |
---|
AC/Sub: 97887/180710 Pascal: 17121 C++: 130348 Python: 33199 Lượt xem/tải tests: 38905 |