Định đề Bertrand được phát biểu bởi nhà toán học Pháp Joseph Louis Bertrand (1882-1903). Định đề như sau: Với một số tự nhiên \(n > 0\) luôn tồn tại một số nguyên tố \(p\) mà \(n < p \leq 2n\).
Yêu cầu: Cho \(n\), kiểm tra định đề Bertrand bằng cách đếm số lượng số nguyên tố nằm trong đoạn \(\lbrack n + 1,\ 2n\rbrack\).
Dữ liệu vào:
+ Dòng đầu ghi số nguyên \(T\ \)là số bộ dữ liệu;
+ \(T\) dòng sau, mỗi dòng tương ứng là một bộ dữ liệu, mỗi dòng chứa một số nguyên \(n \leq 10^{6}\).
Kết quả:
+ Gồm \(T\) dòng, mỗi dòng chứa một số nguyên là số lượng số nguyên tố trong đoạn tương ứng với dữ liệu vào.
Ví dụ:
| Input | Output | Input | Output | |
|---|---|---|---|---|
| 1 2 | 1 | 2 1 3 | 1 1 |
| Code tích cực |
|---|
| Trong 24h |
|
| Trong 7 ngày |
|
| Trong 30 ngày |
|
| Thống kê |
|---|
|
AC/Sub: 120817/226949 Pascal: 18142 C++: 157988 Python: 50747 Lượt xem/tải tests: 41021 |