CHIA HẾT

(lcchiahet.*)

Tèo là một học sinh chuyên Tin nhưng lại rất giỏi số học, một hôm Tèo nghĩ ra một bài toán và đố Tý giải như sau: Cho các số nguyên dương \(n,\ a,\ b,\ c\) \((1 \leq n,\ a,\ b,\ c \leq 10^{9})\). Hãy đếm xem có bao nhiêu số nguyên dương trong đoạn \(\lbrack 1,\ n\rbrack\) chia hết cho 2 trong ba số a, b, c nhưng không chia hết cho số còn lại.

Dữ liệu vào:

+ Gồm 1 dòng ghi lần lượt 4 số nguyên dương \(n,\ a,\ b,\ c\).

Dữ liệu ra:

+ Ghi một số nguyên duy nhất là kết quả bài toán.

Ví dụ:

Input Output Giải thích
10 2 3 4 3 Trong các số nguyên dương từ 1 đến 10 có 3 số thỏa mãn yêu cầu đề bài:
Số 4 chia hết cho 2, 4 không chia hết 3
Số 6: chia hết 2,3 không chia hết 4
Số 8: chia hết cho 2, 4 không chia hết 3

Ràng buộc:

+ Có 80% số điểm ứng với \(n \leq 10^{7}\)

+ Có 20% số điểm không có ràng buộc gì thêm.

Bạn cần đăng nhập để nộp bài

hpcode.edu.vn
Code tích cực
Trong 24h
  1. rianzz (10/17)
  2. bo0n_0708 (9/27)
  3. minh1806 (6/19)
Trong 7 ngày
  1. tienthanh0201 (45/53)
  2. sangdp.clc (44/73)
  3. bo0n_0708 (38/92)
Trong 30 ngày
  1. conmadem (163/205)
  2. bo0n_0708 (139/237)
  3. bao_khanh (112/176)
Thống kê
AC/Sub: 97887/180710
Pascal: 17121
C++: 130348
Python: 33199
Lượt xem/tải tests: 39607

Lưu Hải Phong - 2020
[email protected]